
An End-to-end Deep Convolutional Neural Network for a Multi-scale Image

Matching and Localization Problem

Sungsoo Ha, Yuewei Lin, Xiaojing Huang, Hanfei Yan, Wei Xu

Brookhaven National Lab

Upton, NY, USA

{sungsooha,ywlin,xjhuang,hyan,xuw}@bnl.gov

Abstract

Diverse imaging techniques are utilized in many scien-

tific domains to acquire a rich description of the subject

under study and to further discover a variety of its proper-

ties. Especially, in sample systems, by probing with opti-

cal, electron or x-ray beams, the captured images describe

the sample in an extremely large range of length scales.

This makes the correlation from one image to another very

difficult in addition to the intrinsic appearance complexity

of those scientific images. In this paper, we aim to tackle

this multi-scale image matching and localization problem

by proposing an end-to-end deep convolutional neural net-

work. Our proposed network is designed to first generate

different filters according to the two queried images origi-

nated from different length scales. Then, to compute the cor-

relation map, we use these filters to predict the correspon-

dence between the two images. For the training and eval-

uation, we collect a number of electron microscopy experi-

ments to form a multi-scaled image patch dataset comprised

of various material structures. We observe about 90% accu-

racy for multi-scale image matching and localization while

a triplet-based network shows about 78% accuracy.

1. Introduction

In a wide variety of sample systems, the cross-modal and

multi-length scale imaging approach utilizing complemen-

tary imaging techniques is of great interest in solving scien-

tific problems. Images obtained from different microscopy

methods reveal different aspects of the sample’s elemental,

chemical or physical properties. These integrated data can

provide a comprehensive view of the sample under study

across multiple magnitude of length scales with various

contrast mechanisms. This approach is expected to make

significant impacts in many fields, where heterogeneity and

complexity play critical roles, for instance, material science,

medical imaging, biology and geographical science. Thus,

Figure 1. Example SEM images in different zoom factors.

a robust and automatic image matching and localization ap-

proach is demanded to rescue the scientists from tedious ad

hoc operations.

However, there are a few critical challenges associated

with this mission. First, compared to natural images, these

acquired images describe the samples in extremely small

length scales from nanoscale to micron and thus present

significantly abstract and obscure structural appearances to

identify and compare. Second, considering these images are

represented with a large range of length scales, various con-

trast mechanisms and diverse quality levels, thus, it is ex-

tremely challenging to robustly find a correlative match and

integrate data even within the single modality setting. For

example, for the electron microscopy imaging as shown in

Figure 1, the length scale of the field of views can vary over

several orders. Exhaustive search in a huge search space (at

least, four dimensions for location and size) is impossible

in practice. Without fiducial references, it is extremely dif-

ficult to correlate features imaged with very different mag-

nifications.

Given the challenges mentioned above, we aim to find

out the correspondence between two images potentially

1 16



containing the same object of interest that might be origi-

nated from the same or different scales, contrasts, and noise

levels. More specifically, we aim to match and localize a

target image in a source image, if it exists, by adopting a

deep neural network (DNN). Different from semantic re-

trieval tasks, our focus is to match exact instance (not cate-

gory) of interests and localize it in source image. Although

there are several existing works for either image matching

or localization tasks by utilizing DNN, their objectives or

tasks are not well aligned with ours. For example, using a

DNN, multiple objects can be identified and localized with

bounding boxes or segmented for more precise boundaries

[16, 13, 19, 7]. However, these works detect objects based

on their categories without considering which one is exact

instance of interests. Image feature descriptors from ob-

ject detection-oriented DNNs, Siamese-based DNNs and

Triplet-based DNNs have been actively adapted not only

for comparing two image patches [6, 11, 1, 21, 15, 25, 27]

but also for developing instance-based image retrieval algo-

rithms [20, 4], where the-state-of-the-art performance with

natural images is observed. These works aim to match the

same objects (or instances) in two images/patches, usually

by forming the task as a classification problem, i.e., given

two images/patches, deciding whether they belong to the

same object (instance). However, there is no localization

part to match the exact object bounding boxes.

To tackle the matching and localization problem jointly,

in this work, we propose a new DNN named FTFY (Find

That For You), which matches two input images in multi-

scale imaging configurations and localizes one to the other

simultaneously. Our main contributions are as follows:

• An object detection/localization DNN and an image

matching DNN are combined into a single network ar-

chitecture that is trained in an end-to-end manner;

• A hyper-network structure [5] is employed to compute

correlation between two images and achieve simulta-

neous image matching and localization with a multi-

scale image dataset;

• We establish a multi-scale image dataset that is de-

signed to train multi-scale image matching and local-

ization not only for the proposed FTFY network but

also for a triplet-based network with IOU-based sam-

pling scheme.

The reminder of our paper is structured as follows: Sec-

tion 2 explains how the FTFY network is differentiated from

other related networks. Section 3 and Section 4 present the

details of FTFY network architecture and training strate-

gies, respectively. Section 5 presents how we build multi-

scaled image patch dataset and how it is sampled to train

the FTFY and a triplet-based networks and Section 6 shows

the experimental results with this dataset. Finally, Section 7

concludes the paper with future works.

2. Related Work

Deep neural networks (DNNs) have been shown a big

success in object classification task. Having repeated con-

volution operations in-between max-pooling operations al-

lows DNNs to learn richer features at every spatial scale

[10, 26, 22]. Introducing residual connections to DNNs

that are getting increasingly deeper makes it possible to

train them robustly and to achieve the-state-of-the-art per-

formance [8, 24], not only to classify an image but also

to figure out what and where objects are in the image

[16, 3, 19, 13, 7]. Specifically, after taking an input image,

these networks propose regions that might contain some ob-

jects belonging to pre-defined classes, classify the objects in

each proposed regions, and finally localize the objects with

bounding boxes or segment them to provide more precise

boundaries. In YOLO network [16], the proposed regions

are defined as grid cells of an input image feature map and

a single object is detected from each grid cell; while faster

R-CNN [19] uses the notion of anchor boxes to more ro-

bustly propose regions that might contain one or more ob-

jects. While these two networks are focused on single-scale

object detection, SSD network [13] detects objects in multi-

scale by making prediction on multi-scale feature maps. Re-

cently, YOLO network is extended to support the advan-

tages of these two networks to further boost its performance

[17, 18]. Mask R-CNN [7] extends faster R-CNN [19] by

adding a branch for predicting an object mask in parallel

with the existing branch for bounding box prediction. Al-

though there have been more advanced networks proposed

by many researchers for simultaneous object detection and

segmentation (SDS), there is one important thing that makes

our proposed network different from these. In the proposed

network, the object to find and localize in the input image

(referred as source image in this paper) is given as a second

input image (referred as target image), and their correlation

is computed within the proposed network. Therefore, the

target image is usually a focused description of the object

while the source image captures the same object in a larger

field of view.

To compute the correlation between two images, we

adopt the Siamese neural network architecture [2]. The

Siamese network extracts features separately from two

compared inputs with two identical sub-networks (i.e.

shared parameters and weights). Using the outputs of

the two sub-networks, two image patches can be com-

pared if they are matched as a binary classification problem

[6, 11, 1]. Alternatively, the network can be trained with Eu-

clidean distance-based loss function so that the output fea-

tures can be used as image descriptors to retrieve similar im-

age patches with Euclidean distance [21, 15, 25]. These net-

works outperform the image matching performance com-

pared to traditional hand-crafted image feature descriptors

like SIFT [14]. In the sense of computing correlation be-

17



Figure 2. The overview of the FTFY network with three major

components: the feature extraction, the filter generator for corre-

lation map, and the bounding box prediction.

tween two input images, our proposed network is similar to

these networks but with a major difference in how the two

output features are further utilized in the following network

architecture. Specifically, the feature of the source image

is fed to a convolution layer to predict if the source image

contains the target image or a similar one, and to infer its lo-

cation if any, which is the same as the above discussed net-

works. Different than the source image, the output feature

of the target image is fed to another sub-network to generate

parameters of the convolution layer by borrowing the con-

cept of hyper-network [5], referred as a filter generator in

our proposed network.

3. Network architecture

The FTFY network consists of three major parts. First,

in the feature extraction part, it extracts valuable features

for computing the correlation between two images (Sec-

tion 3.1). Then, features from a target image are passed

to filter generator to generate filters and convolve them with

the source image features to obtain a correlation map be-

tween the two images (Section 3.2). Finally, the correlation

map is used to predict the matched regions as rectangle-

shaped bounding boxes (Section 3.3). Figure 2 illustrates

the overview of the FTFY network. In the following sub-

sections, we will explain the detailed network design.

3.1. Feature extraction

The feature extraction is adapted from the YOLO net-

work [16]. More specifically, the feature extraction part

consists of 13 convolution layers where each convolution

layer is followed a batch normalization layer [9] and a non-

linear activation layer. Four average pooling layers are

added after 2-nd, 5-th, 8-th and 11-th convolution layers. To

recover some information losses as the network goes deeper

and to have more finely grained features, features from 5-th,

8-th, and 11-th are concatenated by stacking adjacent pixels

into different channels, and it is fed to the 12-th convolution

layer. It is worth noting that the network for the feature ex-

traction is shared between two input images, a source and a

target, of the FTFY network.

3.2. Correlation between two images

We compute the correlation between a source and a tar-

get images by convolving the feature map, S, of the source

image with the filters, F , generated from the feature map

of the target image. It is assumed that we have Nf of fil-

ters generated from the target feature map and each filter

has size of fh × fw × fd where fh, fw and fd represent

height, width, and depth of the filter, respectively. Also, we

assume that Si is a feature vector at each spatial location,

i, Fj is the j-th filter (j ∈ [1, . . . , Nf ]), and both have the

same length. Then, convolving Si and Fj is equivalent to

computing cosine distance between both vectors. As there

are Nf different filters, it will result in Nf different dis-

tance metrics at each spatial location, i. We interpret the

distance vector length of Nf as a local correlation vector

and the whole set of the correlation vectors as a correlation

map between the source and the target images.

We employ the idea of hyper-network[5] to generate the

Nf filters from a feature map size of Hfm ×Wfm ×Dfm

where Hfm, Wfm and Dfm are height, width, and the num-

ber of channels of the feature map. Afterwards, for each

channel image, we first transform the image feature space to

another latent space that would be more suitable for the fil-

ter generation. This is completed by applying a sequence of

convolution, batch normalization and non-linear activation.

Here, we use Dfm number of filters with Hfm×Wfm filter

size for the convolution operation. This is, in fact, equiva-

lent to using fully-connected layer but we avoid it for the

computational efficiency. Then, the feature map in the la-

tent space has the size of Dfm×1×1×Dfm as we applied

the projection for each channel. Lastly, we apply another

convolution layer (1 × 1 filter size) to output Nf channels

followed by batch normalization and non-linear activation

layers. After reshaping the output, we have the generated

filter tensor size of Nf ×fh×fw×fd where fh, fw, and fd
are 1, 1 and Dfm, respectively. For example, with 128×128
input image, the feature map is 8× 8× 512, the latent vari-

ables are 512× 1× 1× 512, and finally the generated filter

18



tensor becomes Nf × 1 × 1 × 512 where Nf is set to 256
in our implementation.

3.3. Bounding box prediction

By using the correlation map in Section 3.2, the matched

area of the target image to the source image is predicted

with rectangle-shaped bounding boxes. Note that the corre-

lation map is a set of local correlation vectors where each

vector represents correlation between a local region of the

source image and the full target image. To consider a much

wider region for each correlation vector, we first need to

propagate the local correlation into their adjacent locations.

We implement this by processing the correlation map with 6
convolution layers where each convolution layer is followed

a batch normalization and non-linear activation layers.

With the processed correlation map, we predict B num-

ber of bounding boxes and its confidence score, C, at each

spatial location as in [16]. The confidence score, C, implies

how confident the network is with the predicted bounding

box and it reflects Intersection-Over-Union (IOU) between

predicted bounding boxes and ground truths. In this work, a

bounding box is represented by four parameters, xc, yc, w,

and h. Here, xc and yc are the central location of a bound-

ing box with respect to each cell (i.e. normalized by a cell

size). w and h denote width and height of the bounding box

with respect to full image size (i.e. normalized by an image

size). In our implementation, we pass the processed corre-

lation map into a convolution layer (1 × 1 filter size) and

then a sigmoid activation layer.

4. Training

We have trained the proposed FTFY network with the

multi-part root mean square (RMS) losses from the YOLO

[16] after initializing the feature extractor part with the

weights from a triplet network equipped with the global or-

thogonal regularization (GOR) [27].

For the triplet network, we add a fully connected

layer that outputs a feature vector length of 128 and l2-

normalization layer at the end of the feature extractor part.

To train the triplet network, we randomly sample 1M
triplets out of multi-scaled image patch dataset (See Sec-

tion 5.1). The training batch size is set to 64. We use SGD

with momentum in the optimization. The learning rate starts

at 0.01, with momentum 0.9. The learning rate is reduced

after 10, 000 gradient updates by a factor of 0.96. We use

the default setting for the parameters in the triplet loss as

described in [27]. The triplet network is trained with 25
epochs and it converges before the end of training.

To train the FTFY network, we use mini-batch gradient

descent algorithm to minimize the multi-part RMS losses.

We have created 74, 020 target image patches where each

patch is down-sampled by a factor of k ∈ {1, 2, 4, 6, 8, 10}

from the original image patch. Each target patch is associ-

ated with at least 2 to at most 6 multi-scaled source images

where their down factors are also in {1, 2, 4, 6, 8, 10}. The

details on the target-source image pairs for the FTFY net-

work are explained in the Section 5.2. During the training,

we randomly pick one of source images available for each

target image. The training batch size is set to 8. The learn-

ing rate starts at 0.01 and reduced after 100, 000 gradient

updates by a factor of 0.96. We use the default setting for

the parameters in the multi-part RMS losses as described in

[16]. The FTFY network is trained with 100 epochs and it

converges around 60 epochs.

Finally, to avoid over-fitting, we add dropout layers [23]

at the end of feature extractor, filter generator, and bounding

box predictor, along with random source image selection

in different scales. We use leaky rectified linear activation

function for the all non-linear activation layers, if it is not

specified, in the both networks.

5. Multi-scaled image patch dataset

In this section, we present the details of the multi-scaled

image patch dataset used to train the triplet and the FTFY

networks. The image dataset used to build the image patch

dataset is acquired by a bench-top scanning electron mi-

croscope (SEM). There are 222 SEM images obtained by

scanning 24 different kinds of samples. Each image has the

dimensions of 850 × 1280; while the imaging pixel size is

varying from 20 nm to 200 nm.

The first step in constructing multi-scale image patch

dataset with the SEM images is to select key points from

each SEM images. Different types of samples look very

different and have different regions (or objects) of interests

for the scientists. Moreover, the same objects captured in

different scales have very different pixel dimensions. To

consider these variations, we manually draw square-shaped

bounding boxes that cover the interest regions (or objects)

for each SEM image. Note that we set the minimum side

length of the square as 15 pixels.

Given a square-shaped bounding box and an associ-

ated SEM image, the region is down-sampled by factors

of {1, 2, 4, 6, 8, 10} and resized to have 128 × 128 dimen-

sions. We randomly shift the region to have Intersection-

Over-Union (IOU) in ranges of [0.7, 1.0), [0.5, 0.7), and

[0.3, 0.5), and collect multi-scaled image patches from each

IOU ranges. This random IOU region selection is repeated

four times. At the last step, we manually inspect each down-

sampled image patches and discard some of them that is vi-

sually unrecognizable. We call this collected multi-scaled

patches from a bounding box a patch group and Figure 3

shows one example of it.

Finally, the multi-scale image patch dataset contains

3, 906 patch groups (106, 010 patches) out of 222 SEM im-

ages in total. The 2, 734 patch groups are used to generate

19



Figure 3. An example of a patch group. The numbers in x-direction

represents the down sampling factor from a patch image resized to

128 × 128. The letters in y-direction represents (A) key position

and randomly shifted position from the key position based on IOU

range: (B) [0.7, 1.0), (C) [0.5, 0.7) and (D) [0.3, 0.5).

triplet examples (See Section 5.1) and target-source image

pairs (See Section 5.2), and the others are reserved to eval-

uate the trained network performance.

5.1. Triplet sampling

For the brevity, given a patch group, let’s define set A,

B, C and D as multi-scaled patches extracted from a se-

lected bounding box and multi-scaled patches in the IOU

ranges of [0.7, 1.0), [0.5, 0.7), and [0.3, 0.5), respectively,

as shown in Figure 3. We first randomly choose an anchor

from set A. There are three different ways according to how

positive and negative examples are chosen. First, we seek

for them within a patch group such that positive is randomly

chosen from A, B or C; negative is randomly chosen from

a set that is originated from lower IOU range than the pos-

itive one. Second, the positive is randomly chosen from

set A or B; the negative is randomly chosen from set A0

or B0 of different patch group but in the same SEM image.

Lastly, while choosing the positive as the same manner in

the second method, the negative is randomly chosen from

set A” or B” of different patch group in the different kinds

of SEM images. In a triplet example, there are no duplicated

patches.

Note that the second method will always generate valid

triplet examples because we intentionally select patch

groups not to overlaps to each other within a SEM image.

Also, in the third method, as a patch might match with an-

other sampled from the same type of SEM images but in dif-

ferent scale, we choose the negative from different types of

SEM images. We sample 1M triplet examples over 2, 734
training patch groups uniformly using the three sampling

methods.

5.2. Target-source image pair sampling

To generate a source image for a patch group, we first

compute the rectangle window, R, that encompasses all

patches in the SEM image where the patch group is orig-

inated. Then, the source image is randomly cropped from

the SEM image to contain the R while its size is three

times larger than the R. Note that we adjust the cropped

region to be in the SEM image. Multi-scaled source im-

ages are generated by down-sampling the cropped region

with the factors used for the patch group and by resiz-

ing them to 256 × 256 dimensions. Finally, we calculate

true bounding box coordinates for each target patch in the

patch group with respect to each down-sampled source im-

age. For this, we have recorded the square-shaped bounding

box coordinates and selected down-sampling factors for all

patches when we have built the multi-scaled image patch

dataset. Note that although we have collected patches with

square-shaped bounding boxes for the multi-scaled image

patch dataset, the true bounding boxes in target-source im-

age pairs are mostly rectangle-shaped because of the two

facts: (1) R is likely rectangle-shaped due to the random se-

lection scheme in different IOU ranges and (2) the cropped

region is shrunk/expanded with different amount for x- and

y-direction to have 256× 256 dimensions.

For the multi-scaled SEM image patch dataset, we have

generated 10, 601 source image patches out of 3, 906 patch

groups. During the FTFY network training, we only used

source image patches associated with patch groups reserved

for the training.

6. Results

To evaluate the proposed FTFY network and compare

with the triplet network trained for multi-scaled image

patch matching, we define an image retrieval task as fol-

lows: given an image patch as a query, whether a matched

(rectangle-shaped) region for the FTFY network or the most

similar patch for the triplet network can be retrieved from an

entire image where the query is originated when the image

is in lower resolution than the query.

More specifically, for the FTFY network, we said it is

successful if it can retrieve a bounding box that has larger

than 0.7 IOU with respect to the true bounding box among

the top-K bounding boxes based on the predicted confi-

dence scores. On the other hand, for the triplet network,

we first sample image patches with overlaps from the en-

tire image and collect feature vectors of the patches and the

query using the triplet network. We also compute the top-

K expected patches to be retrieved for the query based on

the IOU. Then, we retrieve top-K patches based on the eu-

clidean distance metric over the feature vectors and we said

it is success if one of the top-K retrieved patches is in the

top-K expected patches.

20



Figure 4. Examples of success on the FTFY (failure on the triplet).

For the image retrieval test, we use the patches in the re-

served 1, 172 patch groups in the multi-scaled image patch

dataset in Section 5. Note that we have recorded bounding

box coordinates and down sampling factors for all patches.

Using those information, we crop query images from the

corresponding original SEM images without down sam-

pling. Then, the original SEM images are down-sampled

by the recorded factors and use them as the source images

for the FTFY network and to build a feature vector database

for the triplet network.

The FTFY network shows better retrieval accuracy than

the triplet network as 0.897 versus 0.780 when K = 1 and

0.941 versus 0.902 when K = 5, as summarized in Table 1.

It is important to note that the queried image patch sizes are

all different (i.e. no square shape). For the triplet network,

it is necessary to know the image patch size in advance to

build a proper feature vector database given an entire image

to be searched while it is not necessary for the FTFY.

Model @K = 1 @K = 5 per query (sec)

Triplet 0.780 0.902 6.0
FTFY 0.897 0.941 2.6

Table 1. Image retrieval accuracy.

When it comes to the time performance, the triplet net-

work is required to densely extract image patches from the

entire image to properly search the image and to find the

most similar patch to the query image. For example, given

1280× 850 image to be searched and 60× 60 query image,

it needs to extract about 4, 346 image patches (60×60 patch

size with 15×15 strides) and process over those patches. On

the other hand, this is relaxed for the FTFY network such

that, for example, the entire image is divided into about 40
small images (270× 270 block size with 135× 135 strides,

about 4.5 timer larger than query image size) and process on

Figure 5. Examples of failure on the FTFY (success on the triplet).

them as source input images. With NVIDA GTX 1080, the

FTFY network shows about 2.3 times faster than the triplet

network (2.6 vs 6.0 seconds per query on average) to pro-

cess 1280 × 850 image to be searched and 60 × 60 query

image on average in the test dataset.

Lastly, Figure 4 and Figure 5 show examples of success

and failure cases for the FTFY network (reverse order for

the triplet network). In those figures, top-5 retrieved results

are drawn with bounding boxes over the entire searched im-

ages on the left (yellow for the FTFY and green for the

triplet); and on the right it shows zoomed-in views for the

retrieved results followed by the queried image (surrounded

by red-colored boundary). Note that the retrieved results

are in the order of the confidence score for the FTFY and

of the euclidean distance for the triplet. Figure 4 shows that

the FTFY network works well even over the images in com-

plicated structures or extremely low contrast. Even for the

failure cases shown in Figure 5, the FTFY network are able

to localize the queried image with IOU close to 0.7.

7. Conclusion

In this paper, we presented a deep neural network to

solve the multi-scale image matching and localization chal-

lenge originated in material science. More specifically,

given two input images from different length scales, the

FTFY network was able to match and localize one image

to the other more accurately and efficiently than the state-

of-the-art triplet-based network. Even for the failure cases,

the FTFY network was able to localize the queried image

with the IOU close to 0.7 while the triplet network missed

the matched regions in its failure cases.

In the future, we would like to further extend the FTFY

network to support (1) rotational invariance by allowing to

predict rotated bounding boxes as in [12] and, more impor-

tantly, (2) cross image modality that is aiming to match and

localize two images where both are not only from different

scales but also from different image modalities.

21



Acknowledgment

This research was supported by two Lab Directed Re-

search and Development projects 18-009 and 17-029 of

Brookhaven National Laboratory. This research used re-

sources in Hard X-ray Nanoprobe beamline of the National

Synchrotron Light Source II, a U.S. Department of Energy

(DOE) Office of Science User Facility operated for the DOE

Office of Science by Brookhaven National Laboratory un-

der Contract No. DE-SC0012704.

References

[1] H. Altwaijry, E. Trulls, J. Hays, P. Fua, and S. Belongie.

Learning to match aerial images with deep attentive architec-

tures. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 3539–3547, 2016. 2

[2] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah.

Signature verification using a” siamese” time delay neural

network. In Advances in neural information processing sys-

tems, pages 737–744, 1994. 2

[3] R. Girshick. Fast r-cnn. In Proceedings of the IEEE inter-

national conference on computer vision, pages 1440–1448,

2015. 2

[4] A. Gordo, J. Almazán, J. Revaud, and D. Larlus. Deep image

retrieval: Learning global representations for image search.

In European Conference on Computer Vision, pages 241–

257. Springer, 2016. 2

[5] D. Ha, A. Dai, and Q. V. Le. Hypernetworks. arXiv preprint

arXiv:1609.09106, 2016. 2, 3

[6] X. Han, T. Leung, Y. Jia, R. Sukthankar, and A. C. Berg.

Matchnet: Unifying feature and metric learning for patch-

based matching. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 3279–

3286, 2015. 2

[7] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn.

In Computer Vision (ICCV), 2017 IEEE International Con-

ference on, pages 2980–2988. IEEE, 2017. 2

[8] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

770–778, 2016. 2

[9] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift.

arXiv preprint arXiv:1502.03167, 2015. 3

[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Advances in neural information processing systems, pages

1097–1105, 2012. 2

[11] B. Kumar, G. Carneiro, I. Reid, et al. Learning local im-

age descriptors with deep siamese and triplet convolutional

networks by minimising global loss functions. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 5385–5394, 2016. 2

[12] L. Liu, Z. Pan, and B. Lei. Learning a rotation invari-

ant detector with rotatable bounding box. arXiv preprint

arXiv:1711.09405, 2017. 6

[13] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-

Y. Fu, and A. C. Berg. Ssd: Single shot multibox detector.

In European conference on computer vision, pages 21–37.

Springer, 2016. 2

[14] D. G. Lowe. Distinctive image features from scale-

invariant keypoints. International journal of computer vi-

sion, 60(2):91–110, 2004. 2

[15] I. Melekhov, J. Kannala, and E. Rahtu. Image patch match-

ing using convolutional descriptors with euclidean distance.

In Asian Conference on Computer Vision, pages 638–653.

Springer, 2016. 2

[16] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You

only look once: Unified, real-time object detection. In Pro-

ceedings of the IEEE conference on computer vision and pat-

tern recognition, pages 779–788, 2016. 2, 3, 4

[17] J. Redmon and A. Farhadi. Yolo9000: better, faster, stronger.

arXiv preprint, 2017. 2

[18] J. Redmon and A. Farhadi. Yolov3: An incremental improve-

ment. arXiv preprint arXiv:1804.02767, 2018. 2

[19] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards

real-time object detection with region proposal networks. In

Advances in neural information processing systems, pages

91–99, 2015. 2

[20] A. Salvador, X. Giró-i Nieto, F. Marqués, and S. Satoh.

Faster r-cnn features for instance search. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition Workshops, pages 9–16, 2016. 2

[21] E. Simo-Serra, E. Trulls, L. Ferraz, I. Kokkinos, P. Fua, and

F. Moreno-Noguer. Discriminative learning of deep convolu-

tional feature point descriptors. In Proceedings of the IEEE

International Conference on Computer Vision, pages 118–

126, 2015. 2

[22] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014. 2

[23] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and

R. Salakhutdinov. Dropout: a simple way to prevent neural

networks from overfitting. The Journal of Machine Learning

Research, 15(1):1929–1958, 2014. 4

[24] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi.

Inception-v4, inception-resnet and the impact of residual

connections on learning. In AAAI, volume 4, page 12, 2017.

2

[25] Y. Tian, B. Fan, F. Wu, et al. L2-net: Deep learning of dis-

criminative patch descriptor in euclidean space. In Cvpr, vol-

ume 1, page 6, 2017. 2

[26] M. D. Zeiler and R. Fergus. Visualizing and understanding

convolutional networks. In European conference on com-

puter vision, pages 818–833. Springer, 2014. 2

[27] X. Zhang, F. X. Yu, S. Kumar, and S.-F. Chang. Learning

spread-out local feature descriptors. In Proceedings of the

IEEE International Conference on Computer Vision, pages

4595–4603, 2017. 2, 4

22


